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Substitution p = i/4 ra leads to the Emden-Fowler equation with a different value of CJ 

d 

dr - yrw-l = 0 

The boundary conditions now are: U) (0) bounded and w (hl) = 1 if (2.5) is used, and 
‘* (2 v/h3 = 1 in the case (2.6). Dependence of the solutions on the parameter corres- 

ponds to Fig. 6a (v = 1, attraction), or to Fig. 6c (i -1, repulsion). In the latter 
case u’nl = 10 (0) is the maximum value of w. These curves can be used in assessing the 

stability of the equilibrium [5]. In addition, in the repulsion case nonplanar forms of 

equilibrium and formal solutions describing forms with an apex analogous to those ob- 

tained in [S], are also possible. If the dividing curve corresponds to the “usual” forms, 
then the forms with an apex will have a corresponding combination of the dividing 

curve with a curve on which 6 -+ - rrg as 1 (Fig. 3). 
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The solution of the following problem of the elasticity theory is given for an 
infinite weightless homogeneous isotropic layer: a normal concentrated force 
acts at one of the boundaries of the layer, pressing it against a rigid smooth 
punch, represented by a convex body of revolution whose axis coincides with the 
support line of the concentrated force; one has to determine the largest possible 
value of the radius of the contact area between the punch and the layer for diff- 

erent punches and for different magnitudes of the concentrated force. 

1. We consider the layer in a cylindrical system of coordinates i 0; , with origin at 
the point of application of the concentrated normal force i,!. The : -axis is pointed 
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perpendicular to the boundary of the layer in the direction opposite to the direction of 
the force. Then. the equation of the boundary of the layer, which is in contact with 
the punch, is z = - h, where h denotes the thickness of the layer. We will assume that 
the base of the punch is a convex surface given by the equation z =f(r), while the lat- 
eral surface is cylindrical with radius R. We consider that the function f (r) has in the 
interval [O, RI at least a second continuous derivative. As a consequence of the conve- 
xity of the punch, the area of contact with the layer is a circle whose radius a satisfies 
the inequality a < R. The case a = R will be called the case of complete indentat- 
ion of the punch into tire layer. 

For the normal component of the displacement of the points of the boundary z = - h 
of the layer and for the normal and shearing stresses on this boundary, we introduce the 
notation w (r), d,(r), zrz (r). Then, according to the conditions of the problem, for 
z=-h 

dw ! dr = f’ (r) (0 < r < 4 (f.1) 
b, (r) = 0 (r > 4 V.2) 

%z W = 0 (O\<r<w) (1.3) 

Based on the method for solving boundary value problems for a layer in the case of an 
axially-symmetric deformation [I, 21, it is easy to obtain for the case under consider- 
ation the following integral representations for the functions dw / dr and a,(r) for z = 
=- h: 

dW f&-’ (sh l’h + Ph ch Pb) - a (8’) (sh %‘h + %‘h) 
-z-= 

(i-vZ)Z OD p 

E s ch 2ph - 2psha - 1 
J, @@&, 

0 
(1.4) 

m 00 

6, (r) = - s pa (P) W-4 dpt a (14 = - s m, (r) J, f pr)dr 
0 0 

In the derivation of the formulas (1.4), one assumes that the condition (1.3) is satisfied 
at the boundaries of the layer. The improper integral in the first relation of (1.4) con- 
verges only if a (0) = ‘I2 @I-’ which, however, follows from the condit[on of equili- 
brium of the layer (ZF, = 0) and therefore it is always satisfied. 

In the boundary conditions (I, 1) and (1.2) we substitute for dw I’ dr and b,(r) the 
corresponding integrals in (1.4). We arrive then to dual integral equations with respect 
to the function a (p), which after elementary malformations can be reduced to the 
form 

00 

s pa (~1 M-9 dp = - 2 (1 ! ,,*) f’ PI + 
0 

+jh 

a(j~)(e-~~~ - 2paha - 2ph - 11-t Qn-’ (tsh ph+ph ch @4 J,tprJ dp 
ch 2ph - 2pah2 - 1 (r < 4 

0 
00 

s pa (@Jo (pr) dnp = 0 (r > 4 
0 

(1.5) 

We seek the solution of the dual equatious (1.5) in the form 

~(p)=SY(z)sinp~~+Bsinpa 
0 

(1.6) 
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where B is for the present an arbitrary constant. For the validity of the following com- 
putations it is necessary to assume that X (X) is a continuous function in the interval 

IO,al. 
By the usual method, based on properties of Bessel functions, 

can be reduced to Abel’s integral equation 
r 

s 

F (x) dx E 

r y-r”- 3? - = - z(1-+) f’ (r) 
0 

the dual equations (1.5) 

F (z) = z [x (2) - $1 p a (e 
-2ph 

0 

- 2pVla - 2ph - 1) + $ (sh pk + pk ch pk) 

ch 2pk - 2p”h” - 1 X 

x sin pxdp 

The solution of this equation is [3] 

In the right-hand side of the last equality we integrate by parts, we differentiate the 
obtained expression with respect to z and we perform the change of variables x = r 
Sin Ye In the expression for F (5) we make use of the relation (1.6) and then we inter- 
change the order of integration in the improper integral. As a result, we arrive at the 

integral equation of the second kind 

0 0 
(1.7) 

K (5, t) = -$ 1 (e-2ph - 2p3k2 - 2pk - 1) sin pt f 2pt (sb pk + pk ch $1) 
ch 2ph - 2p”lP - 1 

sin px &J 

0 

(1.8) 

Obviously, every solution of this equation is continuous in the interval [o, al, since 
both the kernel and the free term of the equation are continuous (we recall that by ass- 

umption, f” (I^) is a continuous function in 10, R] and a < Rj. 
In order to clarify the role of the undetermined constant B in the integral equation 

(1.7), we express the stresses oz (r) on the contact area in terms of the function X (x). 

To do this, we replace in the second formula (1.4) pa (p) from the relation (1.6). We 

obtain 
Q,(?y = - $ x txJdx _ 

;. l/x2-9 Jr& (1 *g> 

By virtue of the generalized mean value theorem for the continuous function X (Z) in 
the interval [O, a] the first term in (1.9) has the limit zero as r ---t a. For r --t a and 
B # 0 the second term increases indefinitely. Consequently, the case B > 0 corres- 
ponds to the complete indentation of the punch into the layer. But if the punch is not 
completely indented into the layer, then one has to assume lj = 0. 

From relation (1.6) we obtain the important formula 
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a 

-&=~sx(~)~ +Ba (1 .lO) 
0 

From (1.10) , in the case of the completely indented punch(a = B, B # 0) one can 
determine the constant B in terms of the force Q which acts on the layer. For the punch 
which is not completely indented into the layer (B = 0): the last formula can be used 
to determine the radius of the contact area in terms of the known force Q, or vice versa. 

We note that for h + 30 the kernel K (2, t) + 0 uniformly with respect to z and r. 

Therefore, from Eq, (1.7) we obtain, after a limiting process, the exact expression of 

the function X (~1 corresponding to the semispace. Substituting it into the expression 
which gives the contact stresses o, (r), we obtain the known solution of the axisymmetric 

contact problem for the semispace 143. 

2. Let z = f, (F), F E IO,Rl be the equation of the surface of the base of some 
non-plane punch, which for the value Q = Q o of the normal force is not completely 
indented into the layer. Let a, be the radius of the contact area between the base of 

the punch and the layer, corresponding to the force Q. . We consider the punch with 
the surface of the base z = kf, (r),where 0 ( k < l,and r E LO, RI which is inden- 
ted in the layer such that the radius of the contact area is a = ao. Obviously, such an 
indentation of the punch is possible and it will be incomplete(B = O).It follows from 
the relations (1.7) and (1.10) that in the latter case Q = kQs.Therefore, if we increase 

the force Q up to Qr,, the radius a of the contact area can only increase. Hence it follows 

that for a given value Q = Q,, of the force, the maximal value of the radius a corres- 

ponds to the punch with a plane base, which is not completely indented into the layer 

(it will be shown below that such an indentation is possible). We denote this maximal 

value by A .It is easy to show that the quantity A does not depend.on the force Q. 
Indeed, for a given thickness h of the layer, this quantity has to be taken in such a 

way that the integral equation (1.7) for the punch with a plane base v (r)=O), not com- 

pletely indented into the layer (B = O),should admit a nontrivial solution. This means 
that the kernel (1.8) of the integral equation for z, t E [O, A] must have in its spectrum 

the eigenvalue I = l.Consequently, the quantity A depends only on the properties of 
the kernel (1.8) and does not depend on the force Q, since the kernel does not depend 
on this force. 

From what has been said above about the quantity A it is clear that for any a < A 
the contact problem for an arbitrary convex punch must have a solution and therefore 
the integral equation (1.7) corresponding to this punch must also have a solution for 

n<A. Hence it follows that the number A is the smallest of all those values A ) 
> 0 for which h = 1 is an eigenvalue of the kernel K (5, t) (s,t E 10, A]). 

The quantity n has been determined by the numerical method of replacing the inte- 

gral in the homogeneous integral equation (1.7) by a finite sum. In this connection, 
Gauss’ quadrature formulas with three and five nodes have been used. In the process of 
the computations it has become clear that the kernel K (x, t) (x, t E 10, Al) is non- 

negative and ZL, (x) - bounded p] 

(2.1) 
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For the desired quantity one has obtained the value A = 1 .l h. The quantity 11 has 
turned out to be finite, therefore the punch with a plane base, whose cylindrical part 

has a radius R exceeding A, is incompletely indented into the layer. In other words, 
for R > A the radius of the contact area of such a punch with the layer is equal to 

A . 
It is interesting to note that the authors of [5]. investigating the problem of the un - 

bonded contact between a layer and a semispace under the action of a normal concen- 

trated force, have obtained by another method for the case of an absolutely rigid semi- 
space (R = 00) the value A = 1.16h for the radius of the contact area between the layer 

and the base. which is close to our value. 
The distribution of the stresses on the contact area between the plane punch and the 

layer, in the case of an incomplete and a complete indentation are given below in the 

form of the values of -2 n.a2Q-1s,(r) 

r/a 0 0.05 0.23 0.50 0.77 0.95 1 
a=‘4 6.25 6.19 5.25 2.94 1.18 0.35 0 
a=h 5.28 5.25 4.57 2.78 1.29 0.67 m 

Here the relative values of the stresses cr, (z) are given for r = 0 .and r = aEi (i = 
= 1, 2, . ..( 5), where Ei are the nodes of the Gauss quadrature formula for the interval 

10, 11. 
Since both the kernel K (3, t) and its adjoint kernel L (z, t) = K (t, s)are nonneg- 

ative for 2, t E IO, a], a < A and u,, (X)-bounded (the function u,, (5) for the kernel 
L (3, t) is constructed according to formula (2. l)), one can draw conclusions regarding 

the character of the dependence between the force Q and its corresponding radius a of 
the contact area between the layer and an arbitrary punch with a non-plane base. For 

the sake of simplicity, we will consider that for any value of the force Q the punch ide- 

ntity incompletely into the layer, although the arguments are valid also in the general 

case. 

A nonnegative u,, (z)- bounded kernel has [3] a unique positive eigenvalue, which is 
simple and is the largest in modulus among all the eigenvalues of the kernel. Its corres- 

ponding eigenfunction is nonnegative (to within a scalar multiple). 

Let h (a) be the positive eigenvalue of the kernel K (z, t) (5, t E[(), a]).Since the 
real eigenvalues of the kernels K (IC, t) and L (3, t) coincide, it follows that h (a) is 
the positive eigenvalue of the kernel L (5, t) too. The eigenfunctions of the kernels 

K (I, t) and L (2, t) ,corresponding to the eigenvalue h (a) , will be denoted by 

cp (z, a) and $ (5, a) respectively. Taking into account that the functions rp (2, a) and 
$ (2, a) have constant signs (nonnegative) in the interval [0, a], one can prove that the 
resolvent l? (x, t, A) of the kernel K (5, t) (z, t E IO, a]) has the following structure 

c31 : 

Here, y (Q, h) is a regular function in the neighborhood of h = 3L (a), and C is a 
positive constant. 

We also note that the estimate from below [3] for the positive eigenvalue of the non- 

negative kernelK (x, t) (5, b&O, al, a<A)implies that h (a) < h (A) = 1. 
In the integral equation (1.7) we have h = 1, therefore its solution can be represented 

in the form 
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x (2) = B, (x) + 10 (t) r (2, t, 1) at = 
0 

cq @G =) = CD (t) \Ptt, a) o!t + Q(x) + 4 @ (t) 7 (2, t, 1) dt 
= t - h(a) s 

0 0 

Here @ (5) is the free term of the equation. For a non-plane convex punch we have 

0 (2) >o* 
From the last relation we obtain 

a 

s a (4 t-b = 1 _ch @) s zcp (5, a) dx [ 0 (t) q (t, a) dt + . . . 
0 0 “0 

For u + A we have h (a) --t h. (A) = l,whileq (5, a), $ (z, U)and 0 (x) remain 

nonnegative in [(I, a]. Therefore 
0 

s SX (5) & 3 00 
0 

But then, from the relation (1.10) for a --t A we have Q -+ 00. 
Thus, under the assumptions of the given problem, a non-plane punch cannot be in- 

dented into the layer with a finite force in such a way that the radius of the contact 

area is equal to A. 
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